Parallel Programming

Lec 3

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University Staff SeWelfiome:Ahmed Hassan Ahmed Abu El A			Abu El Atta (Lo
Benha University	You are in: Home/Courses/Compilers	Back To nmed Abu El Atta :: Course Details:	Courses Coogle
Home	Compilers	irried Abd El Atta Course Details.	-
النسفة العربية		add course e	dit course
My C.V.	Course name	Compilers	RG
About		Undergraduate	in
Courses	Level		
Publications	Last year taught	2018	
Inlinks(Competition)	Course description	Not Uploaded	
Theses	Course description		X
Reports	2		You
Published books	Course password		
Workshops / Conferences		add files	
Supervised PhD	Course files	add tiles	
Supervised MSc	Course URLs	add URLs	
Supervised Projects	Course assignments	add assignments	2
Education			
Language skills	Course Exams &Model Answers	add exams	
Academic Positions			(edit)

Find the minimum value in an array of integer numbers

Suppose that we are given the problem $P \equiv$ "Find minimum in "n" given numbers."

The fastest sequential algorithm for finding the minimum number is:

```
\begin{aligned} & \text{Min} = a_0 \\ & \text{Index} = 0 \\ & \text{for } (i = 1; i \leq n\text{-}1; i\text{+}\text{+}) \\ & & \text{if}(\text{Min} > a_i) \\ & \{ \\ & \text{Min} = a_i \\ & \text{index} = i \\ \\ & \} \\ & T_{seq}(n) = O(n) \end{aligned}
```


Find the minimum value in an array of integer numbers

```
For (j = 0; j < n; j ++)do parallel
         M_i = a_i
         index_i = j
For i = 0 to i < log(n) do
         For (j = 0; j < n; j += 2^{(i+1)}) do in parallel
                  if(M_i > M_{i+2}^i)
                           M_i = M_{i+2}^i
                           index_i = index_{i+2}^i
Min = M_0
Index = index<sub>0</sub>
```

Find the minimum value in an array of integer numbers

In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$

speedup is
$$S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$$
.

$$Cost C(n) = n*O(logn) = O(nlogn)$$

$$E(n) = T_{seq}(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1$$

Reducing the Processors Number to Reach to More Efficient Parallel Algorithm

$$\begin{split} E_p(n) &= C_s(n)/C_p(n) = 1 \\ C_s(n)/C_p(n) &= 1 \\ 1*T_s(n) &= p*T_p(n) \\ &\rightarrow C_s(n) = C_p(n) \\ &\rightarrow p = T_s(n)/T_p(n) \end{split}$$

In the summation problem:

$$p = T_s(n)/T_p(n) = n/log(n)$$

$$p = n/log(n)$$

More Efficient Algorithm

```
For (j = 0; j < n/\log(n); j ++)do parallel
             M_j = a_{j*log(n)}
             index_j = {}_{j*log(n)}
             For k = ((j*log(n))+1) to k < ((j+1)*log(n)) do
                          if(M_i > a_k)
                                       M_i = a_k
                                        index_i = index_k
For i = 0 to i < log(n/log(n)) do
             For (j = 0; j < n; j += 2^{(i+1)}) do in parallel
                          if(M_i > M_{i+2}^i)
                                       M_i = M_{i+2}^i
                                        index_i = index_{i+2}^{i}
Min = M_0
```

 $Index = index_0$

More Efficient Algorithm

In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$ with number of processors equals p = n/log(n)

speedup is
$$S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$$
.

$$Cost C(n) = (n/log(n))*O(logn) = O(n)$$

$$E(n) = T_{seq}(n) / C(n) = O(n / n) = 1$$

Search for a key value in an array of integer numbers

Suppose that we are given the problem $P \equiv$ "search for a key value x in "n" given numbers."

The fastest sequential algorithm for finding x in the array is:

Index = -1 // can be replaced by size of array + 1 to find minimum

```
for (i = 0; i \le n-1; i++)

if(a_i == x)

{

index = i

break;
```

If(Index != -1) then the number is found in the position = index

Else the number is not found

$$T_{\text{seq}}(n) = O(n)$$

Efficient Search Algorithm

```
For (j = 0; j < n/\log(n); j ++)do parallel
            index_i = n
            For k = (j*log(n) \text{ to } k < ((j+1)*log(n)) \text{ do}
                         if(a_k == X)
                                      index_i = k
                                      break
For i = 0 to i < log(n/log(n)) do
            For (j = 0; j < n; j += 2^{(i+1)}) do in parallel
                         if(index_j > index_{j+2}^i)
                                      index_i = index_{i+2}^i
Index = index_0
If(Index != -1) then the number is found in the position = index
Else the number is not found
```

Search Algorithm

In general, instances of size n of P can be solved in parallel time $T_{par} = O(logn)$ with number of processors equals p = n/log(n)

speedup is
$$S(n) = T_{seq}(n) / T_{par}(n) = O(n/logn)$$
.

$$Cost C(n) = (n/log(n))*O(logn) = O(n)$$

$$E(n) = T_{seq}(n) / C(n) = O(n / n) = 1$$

