Parallel
Programming

Lec 3

___]

Books
—

Chapman & Hall /CRC
Num

perical Analvais and Scientific Compuring

Parallel
Algorithms

| ~——————

Henr Casanova, Arnaud Legrand
and Yves Robent

(ol CRC Press

Roman Trobec - Bostjan Slivnik
Patricio Bulic - Borut Robi¢

Introduction
to Parallel
Computing

From Algorithms to Programming on
State-of-the-Art Platforms

@ Springer

COMPUTING

ALGORITHMS AND
PARALLEL

|t
[

i

RTEITI LI LA

T

pror
i 4
P . S

i

(ATTIR AR

)

i g :
i‘ 5@ 2 v
A A mi

L

it

FAVEZ GEBALI

il | 1 b
%8 BRBREAS

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Find the minimum value in an
array of integer numbers

Suppose that we are given the problem P = “Find minimum in “n” given
numbers.”

The fastest sequential algorithm for finding the minimum number is :
Min = a,
Index =0
for (I=1;1<n-1; i++)
If(Min > a))
{
Min = g,
Index =1
}
Teeq(n) = O(N)

P4

Ps

Pe

P7

My=aq M;=a, M,=a, Ms=a, M,=a, Ms=a; Mg=ag M. =a,
Index, =0 Index, = 1 Index, =2 Index; =3 Index, = 4 Index; = 5 Index, = 6 Index, =7
if(My>M,) if(M,>M,) if(M,>M;) if(M>M,)
{Mg =M, {M, =M, {M, =M, Mg =M,
Ind, = Ind, } Ind, = Ind.} Ind, = Ind.} Ind, = Ind.}
i=1
if(My>M,) if(M,>M)
My =M, M, = Mg
Ind, = Ind,} Ind, = Ind.}

Find the minimum value in an
array of integer numbers

For () = O j <n;j++)do parallel
= a
mofex =

For i1 =0toi<log(n) do |
For(j=0;j<n;j+=20*1)) do in parallel

If(M; > M;.5)
1
M; = M,
|ndex = Index;,,
}
Min = M,
Index = Index,

Find the minimum value in an
array of integer numbers

In general, instances of size n of P can be solved In
parallel time T, = O(logn)

speedup Is S(N) = Tgq(N) / Tper(n) = O(n/logn).
Cost C(n) = n*O(logn) = O(nlogn)
E(n) = Tgqy(n) / C(n) = O(n / (nlogn)) = O(L/logn) <1

Reducing the Processors Number to
Reach to More Efficient Parallel
Algorithm

E,(n) = C4(n)/C,(n) =1
C(n)/C,(n) =1
1*Ty(n) = p*Ty(n)

l

Cy(n) = C,(n)
p = Ty(n)/Ty(n)

l

In the summation problem:
p = T(n)/T,(n) = n/log(n)
p = n/log(n)

M,=min(a,,a,,a,,as) M,=min(a,,as,ag,a) M,=min(ag,aq,a,4,314) M,=min(a,,a;3,314,315)

L L |
oo, =
Mo =M, {M, =M,
Ind, = Ind,} Ind, = Ind,}
i=1
if(My>M,)
My =M,
Ind, = Ind,}

More Efficient Algorithm

For (j =0;j<n/log(n) ; j ++)do parallel
M; =2 juiog(n)

INdeX; = jx09(n)

For k = ((j*log(n))+1) to k < ((j+1)*log(n)) do
if(M; > a,)
{
M; = a,
index; = index

}

For i = 0 to i<log(n/log(n)) do
For (j=0;j<n;j+=20*D)do in parallel
if(M; > M,,.,")
{

M; = M.,
index; = index;,,'

More Efficient Algorithm

In general, instances of size n of P can be solved In
parallel time T, = O(logn) with number of
processors equals p = n/log(n)

speedup Is S(n) = Tg,(N) / Tpa(n) = O(n/logn).
Cost C(n) = (n/log(n))*O(logn) = O(n)
E(n) = Tgqy(n) /C(n) =0(n/n) =1

Search for a key value in an
array of integer numbers

Suppose that we are given the problem P = “search for a key value x in “n
given numbers.”

The fastest sequential algorithm for finding x in the array is :
Index =-1//can be replaced by size of array + 1 to find minimum

for (1=0;1<n-1; i1++)

If(a; == X)
Index = i
break:

}

If(Index !=-1)then the number is found in the position = index
Else the number is not found

T“I‘nl = O‘nl

Ind, = 15 Ind, =15 Ind, =15 Ind; =15
|nd0=5earch(ao’al’az’as) Ind1=search(a4,a5,a6,a7) Ind2=search(ag,ag,alo,an) Ind3=search(alz,a13,a14,a15)

if(Indy>Ind,) if(Ind,>Ind,)
{Ind, = Ind,} {Ind, = Ind}

if(Indy>Ind,)
{Ind, = Ind,}

Efficient Search Algorithm

For (j =0;j <n/log(n) ; j ++)do parallel
index; = n

For k = (j*log(n) to k < ((j+1)*log(n)) do

if(a, == X)

{
index; = k
break

b

For i =0 to i<log(n/log(n)) do
For (j=0;j<n;j+=20*D)do in parallel
if(index; > index;,,")

{

index; = index;,,'

Index = index,

If(Index !'= -1)then the number is found in the position = index

Else the number is not found

___]

Search Algorithm

In general, instances of size n of P can be solved In
parallel time T, = O(logn) with number of
processors equals p = n/log(n)

speedup Is S(n) = Tg,(N) / Tpa(n) = O(n/logn).
Cost C(n) = (n/log(n))*O(logn) = O(n)
E(n) = Tgqy(n) /C(n) =0(n/n) =1

